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Abstract

Background: Scanning of the genome for selection signatures between breeds may play important role in
understanding the underlie causes for observable phenotypic variations. The discovery of high density single
nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome–wide scan in pig populations
in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic
improvement programs. However, prior to this study genomic region under selection in commercially selected
Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we
have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two
breeds by using the FST approach.

Results: In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci
(3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high
level of genetic differentiation (FST ≥0.490). The identified candidate genes were involved in a wide array of
biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate
metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1,
MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under
selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3,
CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and
immune response ( HCST and RYR1).

Conclusions: Some of the genes may be used to facilitate genetic improvement programs. Our results also provide
insights for better understanding of the process and influence of breed development on the pattern of genetic
variations.

Keywords: Korean native pig, Genome-wide, SNP, Selection signature
Background
Pigs have long been of great economic importance to
many farmers in the world. Molecular evidence supports
independent domestication of pig in Asia and Europe
from wild boar sub-species [1,2]. As compared to their
wild ancestor, domestic pig breeds display a wide range
of phenotypic variations that have been manipulated and
shaped during the course of domestication and breed
development for a wide range of traits. Some pig breeds,
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particularly commercial breeds have been intensively se-
lection for better growth, meat quality and fertility traits
may have resulted in loss of genetic diversity. To the
contrast, most traditional breeds are reared by small-
holder farmers and less subjected to selection pressure
and harbor higher genetic diversity for adaptation under
marginal environments.
The superiority of some commercial pig breeds for

growth and carcass traits over traditional breeds, have led
them to be the breed of choice and their continuous
utilization in improvement of native populations through
crossbreeding. In Asia, it has been known that commer-
cial breeds have contributed to the genetic pool of most
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:kwanskim@chungbuk.ac.kr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Edea and Kim Journal of Animal Science and Technology 2014, 56:23 Page 2 of 7
http://www.janimscitechnol.com/content/56/1/23
indigenous breeds [3]. Likewise, for the last two de-
cades, western pig breeds have been imported into the
Korea peninsula and crossed with the Korean native
pigs (KNP) in order to improve growth and carcass re-
lated traits [4]. As a result the number of Korean native
pigs decreased noticeably following the introduction of
improved breeds. Although commercial breeds are su-
perior in terms of growth and feed efficiency traits, the
Korean native pig harbors unique genetic material for
product quality and better adaptation to low manage-
ment levels [5]. Despite the indiscriminate crossbreed-
ing, little is known regarding the genome composition
difference between the Korean native and European
(Berkshire) pig breeds.
There is a growing interest in spotting genomic re-

gions or genes that have been under selection. FST statis-
tic is among the most widely used measures to identify
genomic regions or loci that display high differentiation
between populations [6]. Genomic regions or loci that
show significantly high FST values compared with neutral
loci offer evidence for positive selection. Until recently,
there has been little success of detecting genomic regions
under selection in livestock species attributed to lack of
high density molecular markers. However, through the ad-
vancement of high-throughput sequencing technology,
thousands of single nucleotide polymorphisms have been
discovered and open opportunities to facilitate and trans-
form livestock genetic improvement programs. In pig, sev-
eral thousands of SNPs spinning the whole genome has
been discovered using next generation technologies [7].
The availability and discovery of such large number of
SNPs provide a useful starting point to perform genome–
wide scan in pig populations in order to identify candidate
genes underlining phenotypic variations between breeds.
However, prior to this study genomic region under selec-
tion in commercially selected pig breed like Berkshire and
Korean native pig has never been detected using high
density SNP markers. Scanning of the genome for selec-
tion signature between highly selected and traditional
breeds may play important role in identifying genes un-
derlying for phenotypic variation. In addition, it can be
used to facilitate genetic improvement and conservation
programs. To this end, we have genotyped 45 animals are
using Porcine SNP 60 BeadChip to identify loci variants
showing directional selection in comparing European
(Berkshire) and Korean native pig breeds using the FST
approach.

Methods
Pig breeds, sampling and genotyping
Samples were collected from unrelated Berkshire (n = 29)
and from Korea native pig (KNP, n = 16) breed. Briefly,
Korean native pig was phenotypically discriminated as
long black coarse hairs, long straight noses, greatly
protruded mouth and straightly upright ears. The breed is
known for its high prolificacy, better meat quality (high
redness and intramuscular fat [5] and strong adaptability
under low management conditions, but showed a slower
growth rate, small adult body weight, smaller litter sizes,
and lower carcass yield [8]. On the other hand, Berkshire
pig breed is characterized by medium to large body size,
fast growth rate, early maturing, and large litter size, me-
dium and erect ears.
DNA samples of Korean native pig were obtained from

National Institute of Animal Science (NIAS) and that of
Berkshire were obtained from Dasan Breeding Farm in
Korea. Sample collection procedures were approved by
the National Institute of Animal Science (NIAS). During
sample collection animals were treated humanely. All
animals were genotyped performed using the Illumina
Pocrine SNP60 BeadChip [9]. Common monomorphic
SNPs for all of the breeds were discarded from further
analyses. SNPs were filtered with criteria of call rate
(≥90%), minor allele frequency (MAF ≥5%) and Hardy-
Weinberg equilibrium (HWE ≥0.001). Thus finally about
31,755 SNPs were considered for the study.
Statistical analysis
Genetic variations
Genetic diversity was assessed for each breed by calculat-
ing observed and expected heterozygosities using Arlequin
software [10]. Principal component analysis was per-
formed to illustrate the pattern of individual clustering
using SNP and Variation Suite version 7 [11]. PCA assigns
individuals to their population of origin using a common
clustering algorithm Patterson et al. [12]. In the principal
component analysis, the first principal component (PC1)
accounts for the greater variation followed by principal
component (PC2).
Detection of outlier loci or signature of selection
Detection of outlier loci was based on calculation of
fixation index (FST) at different significance levels as a
measure of genetic differentiation for each locus be-
tween Berkshire and KNP following the FDIST approach
proposed by [13] as implemented in Arlequin software
[10]. Briefly, the FDIST program calculate genetic differ-
entiation index (FST) for each loci and then uses coales-
cent simulation to generate the null distribution of FST
values based on the infinite island model [13]. Within
this framework, we ran 20,000 coalescent simulations to
obtain the P − values of locus-specific FST conditioned
on observed levels of heterozygosity with default set-
tings. This method provides evidence for divergent se-
lection by looking for outlier loci with FST values higher
than expected, controlling for heterozygosity. The cor-
responding candidate genes for outlier SNPs (P <0.01)



Figure 1 Individual animal clustering on the basis of principal
component analysis.
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were annotated with the pig genome analysis data re-
pository [14].

Biological process and molecular functional analyses of the
candidate genes under selection
To known the biological process and molecular func-
tional of each candidate genes, we assessed their Gene
Ontology (GO) and classification using a web-based
Database for Annotation, Visualization, and Integrated
Discovery (DAVID) tools [15]. Furthermore, enrichment
analysis was performed to identify biological processes
and molecular functions over-represented by Fisher Exact
test (EASE score). Any GO terms that have a larger than
expected subset of selected genes were considered over-
represented and gave insight into the functional character-
istics of the annotated genes.

Haplotype blocks detection
To investigate whether any of the significantly differenti-
ated loci or genes (P <0.01) are in strong linkage disequi-
librium, we further analyzed LD and haplotype blocks
for the two breeds following the [16] method using the
SNP and Variation Suite version 7 [11]. According to
this method, SNP pairs to be in strong linkage disequi-
librium (LD) if the one-sided upper 95% confidence
bound on D’ is.0.98 (that is, consistent with no historical
recombination) and the lower bound is above 0.7.

Results
Genetic diversity and population structure
The average observed heterozygosity was 0.321 ± 0.171
in Berkshire and 0.326 ± 0.173 in Korean native pig,
whereas the expected heterozygosity was found to be
0.319 ± 0.156 and 0.336 ± 0.153 for Berkshire and Korean
native pig, respectively. The average within − breed fix-
ation index (FIS) was shown deficiency of heterozygosity
(0.029) in Korean native pig whereas it was negative
(−0.008) in Berkshire. To illustrate the pattern of indi-
vidual animals clustering, we performed principal com-
ponent analyses (PCA). Principal component one (PC1)
and principal component 2 (PC2) accounted for 82.33%
and 17.67% of the total variance, respectively (Figure 1)
and clearly separated individuals according to their breed
group.

Genetic differentiation, outlier loci and candidate genes
under selection
In this study, we are primarily intended to identify out-
lier loci in the comparison of two pig breeds (Berkshire
and Korean native pigs). Level of differentiations bet-
ween the breeds was measured by fixation indices. The
overall FST was 0.157 with about 29% (9127) of the loci
having an FST value below zero or equal to zero. The
highest genetic differentiation between the two breeds
was observed on chromosome 16 where 7 SNPs or loci
(rs81228734, rs81458940, rs81459172, rs81459185, rs
81459183, rs81297918 and rs81459195) displayed an FST
value of 1. In the comparison of Berkshire and KNP
breeds, using the FDIST approach indicated that a total
of 1108 loci (3.48%) were significantly different from
zero at 99% confidence level with 870 of the outlier
SNPs displaying a high level of genetic differentiation
(FST ≥ 0.48) (see Additional file 1) and revealing that
the loci are potentially under directional selection. The
distribution of FST as a function of expected heterozy-
gosity based on the 31755 loci is presented in Figure 2.
The FST value plot by chromosome is given in Additional
file 2.

Haplotype blocks
The distribution of haplotype blocks in Korean native pig
and Berkshire are shown in Additional file 1: Table S1.
The overall the distribution of haplotype blocks was
higher in Korean native pig where a total of 76 vari-
able size blocks was identified. In the contrast, in the
Berkshire only 32 haplotype blocks were detected. The
number of haplotype blocks detected in the Korean native
pig population ranged from 10 in chromosome 5 to none
in chromosome 6 and 9. In contrast, the Berkshire popu-
lation had the highest number of haplotype blocks (7) in
chromosome 7 and no haplotype block was identified for
pairs of SNPs in chromosome 10, 11, 14, 17 and 18. The
size of each block varied from 5.716 kb to 158.824 kb
in KNP and ranged from 11. 916 kb to 158.270 kb in
Berkshire samples.



Figure 2 Joint distribution of FST and heterozygosity based on
the 31755 SNPs analyzed for Berkshire and Korean native pig
breed comparison. Loci significant at 5% and 1% levels are
indicated by blue and red circles, respectively, as estimated using
FDIST approach of [12]. The red, blue, solid and broken lines
represent the 1%, 5%, 10% and 50% quintiles, respectively, indicating
the point at which 99%, 95% and 50% of the data fall above that
value, respectively.
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The first block, in chromosome 1 in Korean native pig
covered 116.539 kb and contained IGF2R gene whereas
the second block of the same chromosome spanned about
55.54 kb and covers SCAF8 gene. Two blocks in chromo-
some 5 (first and second blocks) which spanned 51.785 kb
and 137.242 kb, respectively encompassed WIFI candidate
gene which is known to be associated with bone de-
velopment. Similarly, the first block in chromosome 5
spanned about 51.785 kb and encompassed important
gene (MSRB3) which is known to be related to cold and
heat stresses. In chromosome 17, the third haplotype
block covers MC3R gene previously known to be associ-
ated with body weight, adipose mass and feed conversion
efficiency. The two breeds shared 12 common haplotye
blocks. Of these blocks, block 69 in Korean native pig and
block 28 in Berkshire spanned 158.27 kb and includes
HOXA10 gene that play an important role in morpho-
genesis (Additional file 3). We compared the pattern of
FST and haplotype blocks distribution. The highest genetic
differentiation (FST =1.00) values were observed for SNPs
positioned within chromosome 16, but there was no any
halotype block detected for these particular SNPs. Com-
mon for both breeds, the largest haplotype blocks were
detected on chromosome 15 (87,700,078 - 87,163,500)
with average FST value of 0.82, while the smallest haplo-
type (12.848 kb) was detected for chromosome 13 with
these SNPs displaying an average genetic differentiation
of 0.00.
Gene ontology (GO) term analyses of the candidate genes
under selection
The candidate genes were analyzed for their gene on-
tology (GO) and tested for enrichment based on a Fisher
Exact test to identify biological process and molecular
functions most pertinent by our genes list. The biolo-
gical process and molecular functions of the candidate
gene are present in Additional files 3 and 4, respectively.
The identified candidate genes involved in a wide array
of biological processes and molecular functions. Results
revealed that 19 candidate genes were enriched in phos-
phate (GO: 0006796) and phosphorus metabolisms (GO:
0006793). GO term enriched in ion transport contained
16 candidate genes, while 5 (GLI3, CHD7, FBN2, HOXA10
and NR2F2) and 4 (GLI3, CHD7, FBN2 and HOXA10)
candidate genes were involved in limb development (GO:
0060173) and morphogenesis (GO: 0035108), respectively.
In addition, our functional analysis demonstrated that
higher numbers of the candidate genes with significant en-
richment had molecular functions related to ion binding
(48). We also detected a significant encirclement for
candidate genes involved in nucleotide and nucleoside
bindings. Molecular function enriched with ATP bind-
ings contained 23 candidate genes (ATP2A3, ADCK1,
CAMK2D, CHD7, CDKL3, DGKB, ERN1, GALK2, KIF6,
MAK, MAGI3, MAP2K5, MAP3K1, MAP3K14, MYO1B,
PI4KB, PIK3C3, PRKCI, RNASEL, LOC392335, LOC441420,
MYO5B, UBE2W, BRAF and VRK1) under selection.
About 15 and 12 potential candidate genes were in-
volved in protein kinase and protein serine/threonine
kinase activity, respectively.

Discussion
The post-genomics era have opened opportunity in the
scanning of whole for election signature in most com-
mercial livestock species. Selection signatures may be
used to identify genes or chromosomal regions that are
possible targets of positive selection. The detection of se-
lection signatures for local adaptation and phenotypic
variations in Korean and western pig breeds is yet
lacking. In this study, we compared two phenotypically
distinct pig breeds in order to identify a sub-set loci sig-
nificantly differentiated by employing an FST test in
porcine 60 K SNP chip. We detected 1108 outlier loci
(p <0.01) showing signature of selection and some of
associated with genes known to be associated with pro-
duction traits, ear size and morphology and diseases.
Growth and carcass qualities are important traits influ-

encing the pig industry and these traits have been received
considerable attention in breed improvement programs.
Modern pigs have selected for lower levels of fat and fast
lean growth [17]. In support with these facts, we identified
potential candidate genes associated with growth, fat com-
position and feed conversion efficiency. Some of the genes
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include: CART, AGL, CF7L2, MAP2K5, DLK1 and MC3R.
For example study by [18] revealed that chromosomal re-
gion harboring the CART gene is a promising QTL in pig
production traits (abdominal fat, weight and back fat
thickness). In addition, this gene plays a crucial role in a
variety of physiological processes, including food intake
and body weight regulation [19]. Recent genome-wide as-
sociation studies (GWAS) found that genetic polymor-
phisms in the AGL gene has shown to be association with
growth and carcass traits in the crossbred population of
Landrace and Jeju (Korea) Black pig [20]. We also de-
tected signature of selection at TCF7L2 loci which found
to be associated with fat deposition traits in pigs [17]. This
gene is known to locate on chromosome 14 where chro-
mosome − wide significant trait loci for last ribs back
fat and carcass weight were detected in Berkshire and
Yorkshire crosses population [21].
Another important candidate gene under selection is

MAP2K5. MAP2K5 associated with body mass index
and obesity in human [22]. Furthermore this gene is a
component of the MAPK-family intracellular signaling
pathways, responding to extracellular growth factors 2
(IGF2) [23]. Interestingly, we detected selection signa-
tures at DLK1 which is one of among imprinted genes in
the callipyge locus (CLPG) region and associated with
fat deposition, lean muscle mass and prenatal and post-
natal growth rates in pigs [24]. In the comparison of the
small sized KNP against the medium sized Berkshire, we
identified selection footprints in HMGA2 and CA3 genes
which were previously known to be associated with meat
quality traits [25].
We have additionally identified two candidate genes,

GLI3 and MC3R, that known to influence body weight
and growth traits. GLI3 is associated with growth traits
[26]. Melanocortin-3 receptor (MC3R) was previously
reported to affect adipose mass in mice [27]. This gene
is also associated with feed conversion and body weight
in broiler [28] and with body weight in cattle [29]. KNP
grow slower compared to the faster growing ability of
European commercial pig breed (Berkshire). These genes
may be involved for observable phenotypic variations in
terms of growth traits in the two breeds and could serve
as a molecular marker in the breeding programs. There-
fore, our study provides evidence that these candidate
genes detected here are likely under selection for better
carcass quality traits and may be used for marker-assisted
selection in beef cattle breeding program.
Among the potential candidate genes displaying sig-

nature of selection signature are ATF2, MSRB3, TMTC3
and SCAF8 genes which were involved in stress respon-
ses [30,31]. Particularly the MSRB3 gene is known to
play a key role in protection mechanisms against cold
and heat stresses [32]. Considering the extreme en-
vironmental temperature where KNP is originated and
developed, this gene is likely under selection for cold
resistance.
Breed difference for disease resistance quite obvious

between improved and native breeds. KNP is known to
have adaptability under low management systems. We
identified genes known to playing physiological func-
tions of either inhabiting or activating immune response.
These include pig immune receptor (HCST or DAP10)
which was detected predominantly in lymphohemato-
poietic tissues [33]. Studies in humans and mice demon-
strated that DAP10 and DAP12 can either activate or
inhibit immune responses [34] implying that they play
an important role in innate immune responses. Malig-
nant hyperthermia (MH) causes major economic losses
in the swine industry. Interestingly, here we detected sig-
nature of selection in RYR1 gene which is an essential
gene in swine. A single point mutation in the RYR1
gene was found to be correlated with MH in breeds
of swine [35].
Pigs have undergone morphological evolution through

the course of domestication and breed development. For
instance, strong selection signatures have been detected
in loci harboring quantitative trait loci that explain mor-
phological changes in the domestic pig [36]. In line with
this evidence, our GO classification analysis indicated
that some of the candidate genes under selection were
known to be associated with limb development and mor-
phogenesis. Among others, ear size and morphology are
important conformation characteristics for breed discrim-
ination. In this study we detected to two potential candi-
date genes (HMGA2 and SOX5) known to have a key role
in affecting ear size and morphology. HMGA2-LPP fusion
protein promotes chondrogenesis [37]. More interestingly,
studies revealed that HMGA2-deficient mice develop
smaller ears [38] and in dogs, it may be involved in differ-
ences in the size and type of ears [39]. Furthermore, SOX5
plays a role in chondrogenesis [40]. Considering the dis-
tinct variations in ear morphology and size displayed by
the study populations, the detected genes are potentially
under selection for the observable differences. Consider-
able variation was observed regarding to the number and
distribution of haplotype blocks in the two breeds. The
relatively higher number of haplotype blocks detected in
the KNP population is consistence with the demographic
history of the breed [4]. The bottle neck associated with
reduction in KNP population may lead to greater LD.
Modern pig breeds have been selected for reproduc-

tion traits. KNP is known for its high prolificacy and
here we identified some potential genes having role in
reproduction or fertility. Possible role of phospholipase B
in sperm maturation and activation was investigated in
guinea pig [41]. KIF6 or KRP3 gene has involved in sper-
matid maturation mediated by possible interaction with
the Ran GTPase [42]. Previously PDE3A is identified as
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the major cAMP-degrading PDE in the oocyte and regu-
lates the resumption of meiosis [43].

Conclusions
In this study we identified several candidate genes which
have known associated with pork production (growth,
size, and pork quality), morphology, stress and immune
response. Some of the genes may be used to facilitate
genetic improvement programs. Our results also provide
insights for better understanding of the process and in-
fluence of breed development on the pattern of genetic
variations. As the current annotation of pig genome is
not conclusive, it is worth noting that many of the out-
lier loci or genes without GO terms may have relevant
biological meanings and functions.
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